منابع مشابه
A Bayesian nonparametric causal model
Typically, in the practice of causal inference from observational studies, a parametric model is assumed for the joint population density of potential outcomes and treatment assignments, and possibly this is accompanied by the assumption of no hidden bias. However, both assumptions are questionable for real data, the accuracy of causal inference is compromised when the data violates either assu...
متن کاملBayesian Nonparametric Modeling for Causal Inference
Researchers have long struggled to identify causal effects in non-experimental settings. Many recently-proposed strategies assume ignorability of the treatment assignment mechanism and require fitting two models – one for the assignment mechanism and one for the response surface. We propose a strategy that instead focuses on very flexibly modeling just the response surface using a Bayesian nonp...
متن کاملBayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملA Bayesian nonparametric meta-analysis model.
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall effect size, such models may be adequate, but f...
متن کاملA New Bayesian Nonparametric Mixture Model
We propose a new mixture model for Bayesian nonparametric inference. Rather than considering extensions from current approaches, such as the mixture of Dirichlet process model, we end up shrinking it, by making the weights less complex. We demonstrate the model and offer an explanation for the performance. Note: The following files were submitted by the author for peer review, but cannot be con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Planning and Inference
سال: 2012
ISSN: 0378-3758
DOI: 10.1016/j.jspi.2011.10.013